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Abstract: This paper discusses the autoregressive integrated moving average (ARIMA) model, 
generalized autoregressive conditional heteroscedasticity (GARCH) model, and their application in 
risk asset market forecasting. Specifically, we investigated variance error using the GARCH model. 
In addition, we use ARIMA model to forecast future price trends. Finally, we investigate optimizing 
risk-return trade-offs in diversified portfolios using modern portfolio theory (MPT).  

1. Introduction 
Traders in the financial market buy and sell volatile assets frequently. Their only goal is to 

maximize their total return while bearing the minimum risk. In this paper, we have developed a time 
series model that uses only the data of past daily prices to determine each day what the trader should 
do to adjust their assets in their portfolio. In this paper, we also consider the transaction cost of each 
transaction with commission. We consider one risk-free asset, cash, and two risky assets, gold, and 
bitcoin. 

An autoregressive integrated moving average (ARIMA) model is a statistical analysis model, which 
uses time-series data to better understand the data set or predict future trends. A statistical model is 
autoregressive if it predicts future values based on past values [1]. The generalized autoregressive 
conditional heteroscedasticity (GARCH) is a statistical model, which is used to analyze the time-series 
data that the variance error is considered as the autocorrelation of the series. The GARCH models 
assume that the variance of the error term follows an autoregressive moving average process. While 
ARIMA works on price level or returns, GARCH tries to model the clustering in volatility or squared 
returns [2].  

Traditional econometric models, such as regression analysis and time series analysis, usually 
assume constant variance when explaining the volatility of returns of risky assets [3]. But a large 
number of empirical studies show that this assumption is not plausible and cannot fit financial data, 
because financial time series data is unstable, with large fluctuations in a certain period while small 
fluctuations in other time periods, resulting in clustering of fluctuations. Therefore, the first order or 
multi-order difference is used to make it stable for the unstable raw data. 

Investors care about certain investments' expected return and risk when building their portfolio. 
In this paper, we describe the investment returns and risks in terms of the numerical characteristics: 

the expectation and variance of portfolio returns. ARIMA-GARCH model is adopted to estimate the 
expected return rate and variance. On the one hand, we use the ARIMA model to estimate the expected 
return rate. On the other hand, we use the GARCH model to evaluate the variance of the return rate. 

2. Time series analysis 

2.1 ARIMA (𝑞𝑞, 𝑒𝑒, 𝑟𝑟) Model 
An ARIMA model is a statistical analysis model that uses time-series data to better understand the 

data set or predict future trends. A statistical model is autoregressive if it predicts future values based 
on past values. An ARIMA model can be understood by outlining each of its components as follows: 
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• Auto regression (AR): refers to a model that regresses a variable on its own lagged term. 
• Integrated (I): substitute the adjacent difference of the data values for its raw observation to make 

the time series stationary. 
• Moving average (MA): refers to the dependency between an observation and a residual error from 

a moving average model applied to lag observations. 
ARIMA modeling is essentially an exploratory data-oriented approach with the flexibility to adapt 

to the structural appropriateness of the data itself and the model [4]. With the help of autocorrelation 
function and partial autocorrelation function, the stochastic properties of time series can be 
approximately simulated. From it, we can find information such as trend, random change, periodic 
component, periodic pattern, sequence correlation and so on. A prediction of the future value of the 
sequence can be easily obtained with some precision, which can be expressed as: 

𝑟𝑟𝑛𝑛 = ∑ 𝛾𝛾𝑖𝑖 ∙
𝑝𝑝
𝑖𝑖=1 𝑟𝑟𝑛𝑛−𝑖𝑖 + ∑ 𝜃𝜃𝑖𝑖 ∙ 𝜀𝜀𝑛𝑛−𝑖𝑖

𝑞𝑞
𝑖𝑖=1 + 𝜀𝜀𝑛𝑛                    (1) 

Where  𝜀𝜀𝑖𝑖  is the stationary white noise with a mean value of 0 and variance of𝜎𝜎2, p and q are the 
order of autoregression model and moving average model, respectively. This model is named as an 
autoregressive moving average sequence with order p of model autoregressive and order q of the model 
moving average, or ARMA (P, Q) series for short. 𝛾𝛾𝑖𝑖 Is autoregressive coefficient, 𝜃𝜃𝑖𝑖 is the moving 
average coefficient, and these are all parameters to be estimated. ARMA model can only deal with 
time series of stationary processes. If the nonstationary time series is to be analyzed, it must be made 
stationary. The most common and simplest method is to perform a difference operation on the original 
non-stationary time series, that is, to obtain an ARIMA (p, d, and q) model, where d is the order of 
difference. In the ARIMA model, the trend term is extracted through difference operation on time 
series and transformed into the stationary term. Then, the ARMA model is estimated and transformed 
after estimation to adapt to the original sequence model before difference operation. 𝑝𝑝(𝑞𝑞) Is the lag 
order of the AR model (MA model), respectively. And d is the number of times that the raw 
observations are differenced, also known as the degree of difference. 

2.2 GARCH Model 
Essentially, observations do not conform to a linear pattern wherever there is heteroscedasticity. 

Instead, they tend to cluster. Therefore, if statistical models that assume constant variance are used on 
this data, then the conclusions and predictive value one can draw from the model will not be reliable. 

In 1986, BOLLERSLEV, based on ARCH model, introduced the lag terms into conditional 
variance and obtained the generalized ARCH model, GARCH model. GARCH model is a statistical 
model used in analyzing time-series data where the variance error is believed to be serially auto 
correlated. GARCH models assume that the variance of the error term follows an autoregressive 
moving average process. 

The mean equation can be expressed as: 

𝑟𝑟𝑛𝑛 = 𝑚𝑚 + 𝜀𝜀𝑛𝑛    𝜀𝜀𝑛𝑛~𝑁𝑁(0,𝜎𝜎𝑛𝑛2)                          (2) 
The variance equation can be expressed as: 

𝜎𝜎𝑛𝑛2 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑤𝑤
𝑖𝑖=1 ∙ 𝜀𝜀𝑛𝑛−𝑖𝑖2 + ∑ 𝛽𝛽𝑖𝑖𝑠𝑠

𝑖𝑖=1 ∙ 𝜎𝜎𝑛𝑛−𝑖𝑖2                      (3) 

Where  ∑ 𝛼𝛼𝑖𝑖𝑤𝑤
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝑠𝑠

𝑖𝑖=1 < 1,𝛼𝛼0 > 0,𝛼𝛼𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, …𝑤𝑤,𝛽𝛽𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2,3, … 𝑠𝑠. 

2.3 ARIMA-GARCH model 
Combining the ARIMA (p, d, and q) model with GARCH (w, s) model, we can get an ARIMA-

GARCH model to estimate the function of risky assets. While ARIMA works on price level or returns, 
GARCH model tries to model the clustering in volatility or squared returns. As the discrete version of 
Stochastic Volatility model, GARCH also captures the fat-tail effect in risky asset markets. Therefore 
combining ARIMA with GARCH is expected to better fit in modeling volatile prices data than one 
model alone. 
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3. Model Analysis 
Establishing an ARIMA-GARCH model to predict the rate return mainly includes the following 

steps: 
1. Conduct a correlation test on the time series model to check whether autocorrelation exists 

between data. 
2. Use the ADF unit root test to test the stationarity of time series data. 
3. The non-stationary sequence is differentially processed, and the original time series is converted 

into the stationary sequence. 
4. Use AIC (Akaike Information Criterion) to order the model and estimate the parameters. 
5. ARCH test is performed on the selected ARIMA model to determine whether the model has 

heteroscedasticity. If heteroscedasticity exists, the GARCH model should be established. 
6. Residual test is performed on the established ARIMA-GARCH model. Check whether the 

residual term conforms to the white noise process. If not, it indicates that there is still relevant 
information in the residual term that has not been extracted, further improving the model. 

7. Forecast the return rate by using the established model. 
Suppose tomorrow is the nth day, and we define tomorrow’s return rate as a random variable𝑟𝑟𝑛𝑛. For 

risky assets gold and bitcoin, we separately use the ARIMA-GARCH model to analyze their expected 
return and its variance. We can obtain the expected return rate 𝐸𝐸(𝑟𝑟𝑛𝑛) = ∑ 𝛾𝛾𝑖𝑖 ∙

𝑝𝑝
𝑖𝑖=1 𝑟𝑟𝑛𝑛−𝑖𝑖   and its 

variance𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑛𝑛) = 𝜎𝜎𝑛𝑛2. After we get these two numerical characteristic of random variable 𝑟𝑟𝑛𝑛, we 
can build our optimal portfolio based on these values. From our ARIMA-GARCH model, we could 
estimate tomorrow’s conditional standard deviation given all the history data. We will show the results 
in Fig.1 and Fig. 2. 

 
Figure 1. Bitcoin’s conditional standard deviation. 
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Figure 2. Gold’s conditional standard deviation. 

4. Model Improvements 
Most investments are either high risk and high return or low risk and low return. Markowitz (1952) 

argued that investors could achieve their best results by choosing an optimal mix of the two based on 
an assessment of their tolerance to risk. We adopt the modern portfolio theory (MPT) to select the 
optimal portfolio from cash, gold and bitcoin. The MPT is a useful tool for investors trying to build 
diversified portfolios. It is also a practical method for selecting investments to maximize their overall 
returns within an acceptable level of risk. 

Selecting a portfolio may be divided into two stages [5]. The first stage starts with observation and 
experience and ends with beliefs about the future performances of available securities, which is the 
main work of this part. The second stage starts with the relevant beliefs about future performances and 
ends with the portfolio choice. This section is concerned with the second stage. 

We consider the rule that the investor should consider expected return a desirable thing and variance 
of return an undesirable thing since we have assumed that investors are risk-averse. Portfolio 
construction is usually viewed as comprising two broad tasks: 

• The allocation of the overall portfolio to safe assets, such as cash in our model, versus risky assets 
such as gold and bitcoin in our model. 

• The determination of the composition of the risky portion of the complete portfolio. 
We will build a portfolio only consisting of 2 risky assets (gold and bitcoin). Let 𝑤𝑤𝐺𝐺(𝑤𝑤𝐵𝐵) be the 

weight of the portfolio’s value invested in asset gold (bitcoin) such that 𝑤𝑤𝐺𝐺 + 𝑤𝑤𝐵𝐵 = 1. and from the 
results of ARIMA-GARCH model, we can know the expected return of gold (bitcoin), denoted by 
𝜇𝜇𝐺𝐺(𝜇𝜇𝐵𝐵).for simplicity, we denote𝑤𝑤 = (𝑤𝑤𝐵𝐵,𝑤𝑤𝐺𝐺)𝑇𝑇 ,𝜇𝜇 = (𝜇𝜇𝐺𝐺 , 𝜇𝜇𝐵𝐵)𝑇𝑇. 

The expected return rate of the risky asset portfolio is calculated as a weighted sum of the returns 
of the individual assets, which can be expressed as: 

𝐸𝐸�𝑟𝑟𝑝𝑝� = 𝑤𝑤𝑇𝑇𝜇𝜇                                  (4) 

The portfolio’s risk is a function of the variances of each asset and the correlations of each pair of 
assets, which can be expressed as: 
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𝜎𝜎𝑝𝑝2 = 𝑤𝑤𝑇𝑇 ∑𝑤𝑤                                 (5) 

Where Σ is the covariance matrix of the asset returns. 
Usually, the portfolio with maximum expected return is not the one with minimum variance. There 

is a rate at which the investor can gain expected return by taking on variance, or reduce variance by 
giving up expected return. Therefore, we are going to find the optimal weight vector 𝑤𝑤  that 
maximizes expected return rate per standard deviation, which can be expressed as: 

max
𝑤𝑤

𝑤𝑤𝑇𝑇𝜇𝜇
�𝑤𝑤𝑇𝑇∑𝑤𝑤

                                  (6) 

Where 𝑤𝑤𝐺𝐺 + 𝑤𝑤𝐵𝐵 = 1. 
We denote the solution of this optimization problem as 𝑤𝑤∗, which is the optimal weight invested in 

risky assets. 
In the upper part, we have derived the optimal weight vector𝑤𝑤∗, which determines composition of 

the risky portion of the complete portfolio. Next, we are going to determine the proportion of risky 
assets to the overall portfolio, which is called the capital allocation decision. The optimal capital 
allocation depends partly on the risk–return trade-off the risky port-folio gives. But it also depends on 
the investor’s attitude toward risk, so we need to measure and describe risk aversion 

Therefore, a utility function is established to capture the risk aversion, which can be used to rank 
portfolios with different expected returns and levels of risk. By selecting the overall portfolio with the 
highest utility, investors optimize the trade-off between risk and return, i.e., they achieve the optimal 
allocation of capital to risky versus risk-free assets. 

We will assume that each investor can assign a utility score to compete portfolios on the basis of 
the expected return and risk of those portfolios. Higher utility scores are assigned to portfolios with 
more attractive risk-return profiles. Portfolios receive higher utility scores for higher expected returns 
and lower scores for higher volatility. The utility function that has been employed in our model assigns 
a portfolio with expected return 𝐸𝐸(r), the variance of returns 𝜎𝜎2 and cost c the following utility: 

𝑈𝑈 =  𝐸𝐸(r) − 1
2
𝐴𝐴𝜎𝜎2 − c                             (7) 

Where 𝑈𝑈 is the utility value, and A is a parameter of the investor’s risk aversion. 
With a proportion 𝑧𝑧 in the risky portfolio, and 1 – y in cash, the expected rate of return on the 

complete portfolio can be determined by: 

 𝐸𝐸(r) = y𝑤𝑤∗𝑇𝑇𝜇𝜇                                (8) 
Variance of return rate of the complete portfolio can be expressed as: 

𝜎𝜎2 = 𝑦𝑦2𝑤𝑤∗𝑇𝑇 ∑𝑤𝑤∗                              (9) 
The commission cost can be expressed as: 

c = 𝛼𝛼𝑇𝑇|𝑦𝑦𝑤𝑤∗ − 𝑦𝑦0𝑤𝑤0|                            (10) 
Then, Investor’s utility maximization problem can be expressed as: 

max
𝑦𝑦

𝑈𝑈 = 𝑦𝑦𝑤𝑤∗𝑇𝑇𝜇𝜇 − 1
2
𝐴𝐴𝑦𝑦2𝑤𝑤∗𝑇𝑇 ∑𝑤𝑤∗ − 𝛼𝛼𝑇𝑇|𝑦𝑦𝑤𝑤∗ − 𝑦𝑦0𝑤𝑤0|               (11) 

Usually, 𝐴𝐴 ranges from 2.0 to 4.0, here, we adopt the value 𝐴𝐴 = 3. 
We will apply our portfolio theory to the problem, and the change of value of our portfolio is shown 

in Fig. 3. Besides, our choice of the proportion of value invested in risky assets (namely, y) is shown 
in Fig. 4. 

We have also compared our model with the popular LSTM model (Long Short-Term Memory 
model). We find that our model has better accuracy in predicting future prices. We will put some 
predictions of bitcoin and gold by the LSTM model in Fig.5 and Fig. 6, respectively. From Fig.5 and 
Fig. 6, we can obviously see that the LSTM model predicts the future price with large errors. Also, 
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because we have adopted the modern portfolio theory, which will beat all other portfolioss almost 
surely, our strategy is sure to be the best strategy, given only the historical price data. 

 
Figure 3. Change of asset value. 

 
Figure 4. Proportion of value invested in risky assets. 

 
Figure 5. Prediction of price of bitcoin by LSTM model. 
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Figure 6. Prediction of price of gold by LSTM model. 

 
Figure 7. Total values of our optimal portfolio. 

5. Sensitivity Analysis 
Sensitivity Analysis is a tool used in financial modeling to analyze how the different values of a set 

of independent variables affect a specific dependent variable under certain specific conditions. It is 
especially useful in studying and analyzing a ’Black Box Process’ where the output is an opaque 
function of several inputs. An opaque function or process is one that can’t be studied and analyzed for 
some reason. For example, climate models in geography are usually very complex. As a result, the 
exact relationship between the inputs and outputs are not well understood. 

This paper uses sensitivity analysis to study the effect of a small change in commission cost on 
asset value. We have tested our model by changing the numerical value of commission cost 𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
and 𝛼𝛼𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑔𝑔𝑖𝑖𝑛𝑛 , from �𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝛼𝛼𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑔𝑔𝑖𝑖𝑛𝑛� = (1%, 2%)  to (0.5%, 1%) , (2%, 4%)(0.5%, 4%) 
and(2%, 1%), respectively. We will plot the curves of total values of our optimal portfolio in these 
four different conditions, shown in Fig.7. 

6. Conclusion 
In this paper, we establish ARIMA-GARCH model to predict the expectation and variance of the 

rate return. While ARIMA works on price level or returns, GARCH tries to model the clustering in 
volatility or squared returns. As the discrete version of Stochastic Volatility model, GARCH also 
captures the fat-tail effect in risky asset markets. Therefore, combining ARIMA with GARCH is 
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expected to better fit in modeling volatile prices data than one model alone. Combining the ARIMA 
(𝑝𝑝, 𝑑𝑑, 𝑞𝑞) model with GARCH (w, s) model, and we can get an ARIMA-GARCH model to estimate 
the function of risky assets. 
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